banner
Home

Temperature Chamber

Temperature Chamber

  • Environmental Test Chamber: The Ultimate Verifier of Product Reliability
    Dec 11, 2025
        As a "quality gatekeeper" in industrial manufacturing and R&D, environmental test chambers simulate extreme conditions (high/low temperature, damp heat, salt spray, etc.) to pre-expose product defects and verify reliability, acting as the hidden "ultimate examiner" in labs. Core Value: Preempting Potential Failures Products face diverse harsh environments in real use: Antarctic mobile phones endure -40℃ cold, coastal auto parts resist salt spray corrosion, and aerospace components withstand drastic temperature-humidity fluctuations. Post-market exposure of environmental adaptability issues triggers safety risks, massive economic losses, and brand damage. The chamber’s core role is to artificially replicate extreme environments or accelerated stresses in labs, condensing years of natural environmental testing into days/hours. It proactively identifies material aging, structural deformation, and performance degradation, providing data for R&D optimization and quality control. Mainstream Types: Targeted Testing for Scenarios Environmental test chambers are not one-size-fits-all; different types match specific testing needs: High/Low Temperature Test Chamber: The basic type, simulating -70℃ to 150℃ (extended ranges for special models) to test product stability under temperature shocks, e.g., chip startup performance and plastic part thermal deformation. Temperature Humidity Test Chamber: Adds 30%RH-98%RH humidity control to high/low temperature functions, simulating plum rain or tropical environments to assess moisture/mildew resistance, such as appliance casing rust-proofing and textile color fastness. Salt Spray Test Chamber: Sprays neutral/acidic salt spray to simulate marine/industrial corrosion, testing metal and coating corrosion resistance for automotive, marine, and hardware industries. Comprehensive Environmental Test Chamber: Integrates temperature, humidity, vibration, and light to replicate complex scenarios (e.g., aerospace launch/operation environments), serving as core equipment for high-end R&D. Procurement & Usage: Key to Avoiding Risks Demand Matching: Avoid over-pursuing ultra-wide ranges; define temperature/humidity limits and accuracy based on standards (IEC, GB, MIL-STD). For example, consumer electronics do not require military-grade wide-temperature equipment to prevent resource waste. Core Performance Focus: Prioritize temperature uniformity, temp-humidity fluctuation (control accuracy), and temperature rise/fall rate (test efficiency), as these directly affect data reliability. Safety features (over-temperature alarm, water shortage protection) are also non-negligible. Industry Trends: Intelligent & Green Upgrades Driven by Industry 4.0, chambers are evolving toward intelligence: IoT modules enable remote monitoring and data traceability, while AI optimizes test parameters to cut manual intervention. Greenization is another direction—advanced refrigeration systems and insulation materials reduce energy consumption, aligning with green manufacturing concepts. From consumer electronics and aerospace to automotive and medical devices, environmental test chambers underpin product reliability, laying a foundation for enterprise R&D and innovation. In the "quality-first" era, their value as the "ultimate examiner" will grow increasingly prominent.
    Read More
  • Rapid Temperature Change Test Chamber: Accurately Simulating Environments to Safeguard Product Reliability
    Dec 10, 2025
        In high-end manufacturing fields (aerospace, automotive electronics, consumer electronics, etc.), a product's ability to adapt to extreme temperature fluctuations directly determines its service life and safety. As core equipment for simulating environmental stress, the rapid temperature change test chamber becomes an "essential tool" in product reliability testing, relying on its advantages of "fast temperature rise/fall + precise temperature control." 1. Core Features: Speed & Precision Advantages Fast temperature change rate: Conventional equipment reaches 1-3℃/min, while professional models can achieve 5-20℃/min (some special types exceed 30℃/min). It simulates extreme temperature cycles (-70℃ to 150℃) in a short time, greatly reducing test cycles. High temperature field stability: Adopts multi-zone heating and vortex air flow control; internal temperature uniformity is controlled within ±2℃, avoiding test errors from local temperature differences and ensuring reliable data. Intelligent control: Equipped with smart systems supporting custom temperature curve programming (presets over 100 test programs). Real-time data collection and curve display help engineers track the test process and improve efficiency. 2. Typical Applications: Industry-Specific Scenarios Core value: Expose potential product defects under temperature cycles. Key application fields include: Electronics Industry: Tests mobile phones, chips, circuit boards, etc. Detects issues like solder joint detachment and component aging to avoid malfunctions (crashing, short circuits) during use. Automotive Field: Verifies on-board radar, battery packs, sensors. Simulates -40℃ to 85℃ cycles to ensure adaptability to extreme cold and heat. Aerospace: Simulates space temperature stress for satellite components and aviation instruments, ensuring normal operation at high altitudes with severe temperature changes. 3. Key Usage Notes: Ensure Test Quality Standard sample placement: Distribute samples evenly to avoid blocking air ducts; keep a ≥5cm distance from the chamber wall to prevent local temperature interference. Regular maintenance & calibration: Inspect vulnerable components (sealing strips, heaters, sensors) regularly; conduct temperature accuracy calibration at least once a year to maintain optimal performance.     As the "gatekeeper" of product reliability testing, its performance directly affects quality judgment. Select industry-suitable equipment and standardize operations to make each test a reliable "touchstone" for product quality.
    Read More
  • Operation Notes for Rapid Temperature Change Test Chambers: Don't Overlook These Key Points
    Dec 02, 2025
        As a core device for environmental reliability testing, the rapid temperature change test chamber is widely used in electronics, automotive, and other industries due to its ability to achieve drastic temperature variations. Its high/low temperature performance and rapid temperature change capability directly affect test data accuracy, operational safety, and equipment service life. Below are the core operational precautions: I. Pre-Startup: Conduct Basic Inspections Comprehensive pre-startup checks are critical for preventing malfunctions, focusing on "medium, status, and connections": Medium & Pipeline Inspection: Verify that the cooling system's liquid level and pressure meet standards, with no pipeline leakage or blockage. Check the refrigerant system pressure to avoid cooling failure or compressor damage due to insufficient medium. Equipment Status Confirmation: Ensure the chamber door seal is intact (poor sealing reduces temperature change rate and increases energy consumption). Keep the chamber interior clean and free of debris, and ensure sensor surfaces are free of oil and dust to avoid temperature measurement interference. Electrical Connection Check: Confirm power and control cables are securely connected, and the grounding resistance complies with specifications (≤4Ω) to prevent electric leakage or electromagnetic interference. II. Sample Placement: Prioritize Scientific Standards Proper sample placement ensures test authenticity, adhering to the principles of "no interference, no overrun, easy monitoring": Weight & Volume Control: Total sample weight must not exceed the rated load. Single sample volume ≤ 1/3 of the working chamber. Maintain a distance of ≥5cm from the chamber walls and sensors to avoid uneven local temperature caused by airflow blockage. Sample Compatibility: Never place flammable, explosive, corrosive, or toxic samples. For heat-generating samples, specify power in advance to ensure compatibility with the equipment's heat dissipation capacity and prevent overload. Fixing & Wiring Specifications: Secure samples with dedicated brackets to prevent displacement during temperature changes. Use high-temperature resistant insulated wires for energized tests to avoid short circuits and aging. III. Operation Process: Precise Monitoring & Adjustment Dynamic monitoring during operation guarantees test reliability, focusing on "parameters, status, and abnormalities": Parameter Setting & Verification: Set temperature range, change rate, and other parameters per standards and re-verify. Adjust only after the equipment stabilizes to avoid system fluctuations. Operation Status Monitoring: Real-time monitor temperature curves and indicator lights to ensure the deviation between actual and set temperatures ≤ ±1℃. Listen for abnormal noises from components like the compressor and shut down immediately if detected. Abnormal Handling: If the equipment triggers over-temperature, overload, or other protections, do not force reset. First troubleshoot the cause (e.g., abnormal sample heating, unstable voltage) before restarting. IV. Post-Test: Standardized Shutdown & Maintenance Proper post-test procedures extend equipment life, following three steps: "cooling, cleaning, and recording": Gradual Cooling to Prevent Damage: After testing, open the door only when the chamber temperature drops to room temperature (20-25℃) and the temperature difference with the outside ≤10℃, avoiding sample condensation or chamber wall damage. Cleaning & Maintenance: Wipe the chamber interior and door seal with a dry cloth. Use dedicated cleaners for leaked substances. Remove dust from the equipment exterior to ensure unobstructed heat dissipation. Data & Status Recording: Document test parameters, curves, and abnormalities. After turning off the power, cut off the cooling medium supply and organize wires and brackets. V. Long-Term Maintenance: Extend Equipment Lifespan Regular maintenance prolongs service life: Monthly: Check the door seal elasticity and replace if aged. Quarterly: Clean the condenser and evaporator. Annually: Arrange professional inspection and maintenance of the compressor and refrigeration system. The core of test chamber operation is "safety first, standardized operation, and precise monitoring." Strict adherence to the above precautions ensures safety, reliable test data, and extended equipment life, providing strong support for product reliability verification.
    Read More
  • Walk-in Environmental Test Chambers: The Hidden Tech Gem in Industrial Testing
    Nov 18, 2025
    In industrial manufacturing's "quality defense line", walk-in environmental test chambers are low-key yet critical. As "environmental simulation masters", they replicate extreme conditions from polar cold to tropical heat, testing large equipment and batch products. Their hidden technical strengths merit in-depth exploration. I. Spacious Interior for Flexible Adaptation to Diverse Testing Needs The "walk-in" design is a core breakthrough. With  several to dozens of cubic meters of space, it accommodates large products (automotive parts, electronic devices) and enables batch testing of small/medium items. New energy vehicle battery packs and rail transit systems can be tested integrally without disassembly. Flexible racks and zoning fit various sample shapes, solving traditional equipment's "unfit and unstable" issues. II. Precise Temperature Control for Highly Simulating Diverse Extreme Environments Precise temperature control is its core advantage, with a temperature range of -70℃ to 250℃ and humidity of 20%RH to 98%RH, replicating high-altitude, desert and coastal environments. Using PID algorithms and multi-point sensing, temperature/humidity fluctuations are controlled within ±0.5℃ and ±2%RH, ensuring reliable data. It simulates high-altitude conditions for aerospace and verifies consumer electronics' performance in extremes to support product iteration. III. Energy Conservation and Environmental Protection for Long-term Operating Cost Optimization To address high energy consumption, it adopts variable frequency compressors and low-power heating modules for intelligent power adjustment. Double-layer vacuum insulation reduces heat exchange, and high-end models feature waste heat recovery. Energy consumption is cut by over 30% vs. traditional equipment, saving tens of thousands in annual electricity costs. Stable operation lowers maintenance needs and extends service life, reducing long-term costs. IV. Structural Selection and Customization Services Lab Companion's walk-in chambers have two main structures: integral welded and assembled, with diverse specifications compatible with multiple refrigerants. Assembled models use independent panels fixed by interlocks and reinforcing bolts, simplifying transportation and installation. Integral welded models offer better performance, with wider temperature/humidity ranges and faster temperature change rates. In addition, you can choose a suitable model based on your needs. Lab Companion provides customized services if existing specifications are insufficient . V. Conclusion: The "Core Driving Force" for Industrial Quality Upgrading With large space, precise control, energy efficiency and durability, these chambers are industrial testing's "quality stewards". Critical for improving product reliability in manufacturing transformation, they will upgrade to more precise and intelligent versions to empower industrial high-quality development.
    Read More
  • Top Environmental Test Chamber Partner, Your Trusted Choice
    Nov 08, 2025
        Environmental test chambers simulate complex conditions such as high/low temperatures and humidity, widely serving industries including electronics, automotive, aerospace, materials, and medical devices. Their core function is to verify the tolerance of products and materials, enabling early defect detection, ensuring product reliability, facilitating industry compliance, and reducing after-sales costs. They are critical equipment for R&D and quality control.     Founded in 2005, Lab Companion specializes in the R&D and manufacturing of environmental simulation equipment. Since its establishment, the company has deeply cultivated core technologies and obtained multiple patent certifications, demonstrating strong technical capabilities in this field. Our cooperative clients cover numerous industries such as aviation, aerospace, ordnance, marine engineering, nuclear power, communications, automotive, rail transit, electronics, semiconductors, and new energy.         Lab Companion offers a comprehensive product portfolio, including high-low temperature alternating humidity test chambers, rapid temperature change test chambers, thermal shock test chambers, walk-in environmental test chambers, high-low temperature low-pressure test chambers, temperature-humidity-vibration combined test chambers, and customized non-standard environmental test equipment. Each product line provides multiple options for models, sizes, and temperature-humidity parameters to accurately meet diverse application needs.         In addition, we deliver premium pre-sales and after-sales services, offering full-cycle support from product selection to after-sales guarantee to ensure your peace of mind. Should you have any cooperation intentions or related inquiries, please feel free to contact us at any time!
    Read More
  • What should I do if the high and low temperature test chamber has problems? What should I do if the high and low temperature test chamber has problems?
    Jun 23, 2025
    High and low temperature test chamber may encounter a variety of problems in the process of use, the following is a summary of potential faults and their causes from different perspectives: 1. Core system failure Temperature out of control Reason: PID control parameters are out of balance, ambient temperature exceeds the design range of the equipment, multi-zone temperature interference. Case: In a special environment workshop, the external high temperature causes the refrigeration system to overload, resulting in temperature drift. Humidity is abnormal Reason: poor water quality of humidification leads to scaling and nozzle blockage, failure of ultrasonic humidifier piezoelectric sheet, and incomplete regeneration of dehumidification desiccant. Special phenomenon: reverse condensation occurs during high humidity test, resulting in the actual humidity in the box being lower than the set value. 2. Mechanical and structural problems Air flow is disorganized Performance: There is a temperature gradient of more than 3℃ in the sample area. Root cause: the customized sample rack changed the original design air duct and the accumulation of dirt on the centrifugal fan blade led to the destruction of dynamic balance.  sealing failure New failure: the magnetic force of electromagnetic sealing door decreases at low temperature, and the silicone sealing strip becomes brittle and cracks after-70℃. 3. Electrical and control system Intelligent control failure Software level: After firmware upgrade, the temperature dead zone setting error occurs and the historical data overflow causes the program to crash. Hardware level: SSR solid state relay breakdown causes continuous heating and bus communication is subjected to inverter electromagnetic interference. Security protection vulnerabilities Hidden dangers: the synchronous failure of the triple temperature protection relay and the false alarm caused by the expiration of the refrigerant detector calibration. 4. Challenges of special working conditions Specific temperature shock Problem: -40℃ to +150℃ rapid conversion of the evaporator weld stress cracking, thermal expansion coefficient difference resulting in the failure of the observation window seal. Long-term operation attenuation Performance degradation: after 2000 hours of continuous operation, the compressor valve plate wear leads to a decrease of 15% in refrigeration capacity and drift of ceramic heating tube resistance value. 5. Environmental and maintenance impact Infrastructure adaptation Case: The power oscillation of PTC heater caused by the fluctuation of power supply voltage and the water hammer effect of cooling water system damaged the plate heat exchanger. Preventive maintenance blind spots Lesson: Ignoring the positive pressure of the box leads to water entering the bearing chamber and biofilm growth and blockage in the condensate discharge pipe. 6. Pain points of emerging technologies New refrigerant application Challenges: system oil compatibility problems after R448A replaces R404A, and high pressure sealing problems of subcritical CO₂ refrigeration systems. IoT integration risks Fault: The remote control protocol is maliciously attacked, resulting in program tampering and cloud storage failure, resulting in the loss of test evidence chain. Strategy recommendations Intelligent diagnosis: configure vibration analyzer to predict the failure of compressor bearing, and use infrared thermal imager to scan the electrical connection points regularly. Reliability design: key components such as evaporator are made of SUS316L stainless steel to improve corrosion resistance, and redundant temperature control modules are added to the control system. Maintenance innovation: implement a dynamic maintenance plan based on operating hours, and establish an annual refrigerant purity testing system。 The solutions to these problems need to be analyzed in combination with the specific model of the equipment, the use environment and the maintenance history. It is recommended to establish a collaborative maintenance mechanism including the OEM of the equipment, third-party testing institutions and user technical teams. For key test items, it is recommended to configure a dual-machine hot standby system to ensure the continuity of testing.  
    Read More
  • What are the delivery standards of Lab Companion? What are the delivery standards of Lab Companion?
    Jun 23, 2025
    (1) Equipment installation and commissioning On-site service: technical personnel will deliver the goods free of charge and complete the mechanical assembly, electrical wiring and debugging. The debugging parameters shall meet the temperature and humidity, salt spray deposition amount and other indicators in the customer's technical agreement. Acceptance criteria: provide a third-party measurement report, and unqualified equipment shall be returned or replaced directly. For example, the rain test box shall pass 100% acceptance. (2) Customer training system Operation training: covers equipment start and stop, program setting and daily maintenance, customized for different user scenarios such as quality inspection institutions and automobile enterprises. Deep maintenance training: including fault diagnosis (such as troubleshooting of humidity system in high and low temperature and humidity test chamber) and spare parts replacement to improve customers' independent maintenance ability. (3) Technical support and response Instant response: respond to repair demand within 15 minutes, and solve routine faults within 48 hours (negotiate with remote areas). Remote diagnosis: through video guidance or remote access software, quickly locate the problem (such as abnormal dust concentration in the sand test chamber). (4) Spare parts supply and maintenance Make spare parts plan, give priority to the supply of wear and tear parts from cooperative units (such as China Railway Inspection and Certification Center, China Electronics Technology Group), and reduce downtime. Non-manual damage is free of charge during the warranty period, and paid services are provided after the warranty period with transparent charges.
    Read More
  • What should be paid attention to in summer when using the ice water impact test chamber? What should be paid attention to in summer when using the ice water impact test chamber?
    Jun 16, 2025
      When the Guangdong Hongzhan ice water impact test chamber is used in summer, the following matters should be paid special attention to to ensure the stable operation of the equipment and the accuracy of the test results: 1. Environment and heat dissipation management   Enhance ventilation and heat dissipation High temperature in summer is easy to lead to the decrease of equipment heat dissipation efficiency. Ensure that at least 10cm space is reserved around the equipment to promote air circulation. If the equipment adopts air cooling system, the condenser surface dust should be cleaned regularly to prevent poor heat dissipation and overheating of the compressor.Control the environmental temperature and humidity. Avoid placing the equipment in the direct sunlight area. It is recommended that the laboratory temperature be kept at 25±5℃ and the humidity be lower than 85%. High temperature and high humidity environment may accelerate the accumulation of frost or condensation water on the equipment, so it is necessary to increase the dehumidification measures. 2. Refrigeration system maintenance   Water quality and tank management Bacteria are easy to breed in summer, so use deionized water or pure water to avoid hard water scaling and blocking pipes. It is recommended to change the tank water every 3 days, and empty and clean the tank before long-term disuse.Refrigeration efficiency monitoring High temperature environment may lead to overload operation of the refrigeration system. The compressor oil condition should be checked regularly to ensure sufficient refrigerant. If the water temperature exceeds the set value (such as 0~4℃), the machine should be stopped immediately for troubleshooting. 3. Frosting and defrosting treatment   Prevent frost aggravation When the humidity is high in summer, the frost rate inside the equipment may accelerate. It is recommended to perform a manual defrosting process after 10 cycles: set the temperature to 30℃ and keep it for 30 minutes, and then drain water to clean the ice crystals on the evaporator surface. Optimize the test interval to avoid continuous long-term low temperature testing. It is recommended to reserve 15 minutes of buffer time between high temperature (e.g., 160℃) and ice water shock cycle to reduce the impact of thermal stress on the equipment. 4. Adjustment of operation specifications   Parameter setting optimization According to the characteristics of the summer environment, the normal temperature recovery stage time can be shortened appropriately (the reference standard is to complete the temperature switch within 20 seconds), but it must ensure that it meets the requirements of GB/T 2423.1 or ISO16750-4 standards.Safety protection should be strengthened. Anti-freezing gloves and goggles should be worn during operation to avoid the adhesion of hands and low-temperature parts caused by sweating. Before opening the door after high temperature test, the temperature inside the box should be confirmed to be below 50℃ to prevent scalding from hot steam. 5. Emergency and long-term shutdown preparation   Fault response If the equipment has E01 (temperature out of tolerance) or E02 (water level abnormal) alarm, you should immediately cut off the power supply and contact the technical support of the manufacturer. Do not disassemble the refrigeration pipeline by yourself.Long-term protection When not used for more than 7 days, the water tank should be emptied, power should be cut off and dust cover should be covered. At the same time, power should be on for 1 hour every half a month to keep the circuit board dry.   Through the above measures, the impact of high temperature and humidity environment in summer on the ice water shock test chamber can be effectively reduced to ensure the reliability of test data and the service life of the equipment. The specific operation details should be adjusted according to the equipment manual and actual working conditions.
    Read More
  • What are the performance of high and low temperature shock test chamber? What are the performance of high and low temperature shock test chamber?
    Jun 14, 2025
      The high and low-temperature impact test chamber is designed for reliability testing of industrial products under both high and low temperatures. It is used to evaluate the performance of components and materials in industries such as electronics, automotive, aerospace, shipbuilding, and weaponry, as well as in higher education and research institutions, under alternating cycles of high and low temperatures. The main features include: Excellent Conductivity: The alloy cable, made by adding rare earth elements and copper, iron, silicon, and other elements from China, undergoes special processing to achieve a conductivity 62% higher than that of copper. After this process, the cross-sectional area of the alloy conductor is increased by 1.28 to 1.5 times, making the cable's current-carrying capacity and voltage drop comparable to those of copper cables, effectively replacing copper with new alloy materials. Superior Mechanical Properties: Compared to copper cables, the rebound performance of the high and low-temperature impact test chamber is 40% lower, and its flexibility is 25% higher. It also has excellent bending properties, allowing for a much smaller installation radius compared to copper cables, making it easier to install and connect terminals. The special formulation and heat treatment process significantly reduce the creep of the conductor under heat and pressure, ensuring that the electrical connections of the alloy cable are as stable as those of copper cables. Reliable Safety Performance: The high and low-temperature impact test chamber has been rigorously certified by UL in the United States and has been in use for 40 years in countries like the United States, Canada, and Mexico without any issues. Based on advanced American technology, the test chamber has been tested and inspected by multiple domestic institutions, ensuring its reliable safety. Economic Performance Savings: When achieving the same electrical performance, the direct procurement cost of high and low-temperature impact test chambers is 20% to 30% lower than that of copper cables. Since alloy cables are only half the weight of copper cables and have excellent mechanical properties, using alloy cables can reduce transportation and installation costs by more than 20% in general buildings and over 40% in large-span buildings. Using high and low-temperature impact test chambers will have an immeasurable impact on building a resource-efficient society. Excellent Anti-corrosion Performance: When exposed to air at high temperatures, alloy cables immediately form a dense oxide layer that is highly resistant to various forms of corrosion, making them suitable for harsh environments. Additionally, the optimized internal structure of the alloy conductor and the use of silane cross-linked polyethylene insulation material extend the service life of alloy cables by more than 10 years compared to copper cables.                      
    Read More
  • Maintenance methods for constant temperature and humidity test chambers Maintenance methods for constant temperature and humidity test chambers
    Jun 13, 2025
    1. Dust adhering to the condenser can cause the high-pressure switch of the compressor to trip and issue false alarms. Therefore, dust attached to the cooling grid of the condenser can be removed with a vacuum cleaner every month, or by using a hard-bristled brush after turning on the machine, or by blowing it off with a high-pressure air nozzle.2. The area around the machine and the ground at the bottom should be kept clean at all times to prevent a large amount of dust from being sucked into the unit or reducing equipment performance and causing accidents.3. When opening or closing the door or taking samples from the test chamber, do not touch the sealing strip on the door.4. The core of the constant temperature and humidity test chamber - the refrigeration system should be inspected once a year. Check for leaks in the copper tubes and at each joint and interface. If there are any, inform the manufacturer.5. The humidifier and water tank should be cleaned frequently to avoid scaling and affecting steam emission. Clean them after each test. Timely descaling helps extend the lifespan of the humidification tube and ensures smooth water flow. When cleaning, use a copper brush and then rinse with water.6. The distribution room should be cleaned and inspected more than once a year. Loose nodes can put the entire equipment in a dangerous working state, burn out components, cause fires, alarms, and endanger lives.7. The dry and wet bulb wicks should be checked frequently. Replace them promptly if they become hard or dirty. It is recommended to replace them every three months.8. Inspection and maintenance of the water circuit. The water pipes in the water circuit are prone to clogging and leakage. Regularly check for leaks or blockages. If found, remove them promptly or notify the manufacturer.
    Read More
  • Two reasons why the constant temperature and humidity test chamber does not refrigerate Two reasons why the constant temperature and humidity test chamber does not refrigerate
    Jun 10, 2025
    One reason 1. Because the temperature of the constant temperature and humidity test chamber cannot be maintained, observe whether the refrigeration compressor can start when the test chamber is running, and whether the compressor can start when the environmental test equipment is running, indicating that the circuit from the main power supply to each compressor is normal and the electrical system has no problem. 2. There is no fault in the electrical system. Continue to check the refrigeration system. First, check whether the exhaust and suction pressure of the low temperature (R23) compressor of the two sets of refrigeration units are lower than the normal value, and whether the suction pressure is in the vacuum state, indicating that the refrigeration dose of the main refrigeration unit is insufficient. 3. Touch the exhaust pipe and suction pipe of the R23 compressor with your hand, and find that the temperature of the exhaust pipe is not high, and the temperature of the suction pipe is not low (no frost), which also indicates that the R23 refrigerant in the host is insufficient. Another reason: 1. The cause of the failure has not been determined, and further confirmation is made in combination with the control process of the constant temperature and humidity test chamber. The test chamber has two sets of refrigeration units. One is the main unit, and the other is the auxiliary unit. When the cooling rate is high, both units operate simultaneously at the beginning of the temperature maintenance phase. Once the temperature stabilizes, the auxiliary unit stops, and the main unit maintains the temperature. If the R23 refrigerant leaks from the main unit, its cooling efficiency will be significantly reduced. During the cooling process, both units operate simultaneously, ensuring stable temperatures and a gradual decrease in cooling rate. In the insulation phase, if the auxiliary unit stops, the main unit loses its cooling function, causing the air inside the test chamber to rise slowly. When the temperature reaches a certain level, the control system activates the auxiliary unit to cool down, after which the auxiliary unit stops again. The cause of the production failure has been identified as a low-temperature (R23) refrigerant leak from the main unit. Upon checking the refrigeration system for leaks, a crack was found on the valve stem of the hot gas bypass solenoid valve, measuring about 1cm in length. After replacing the solenoid valve and recharging the system with refrigerant, the system returned to normal operation. This analysis shows that the fault diagnosis follows a step-by-step approach, starting from the 'external' aspects and moving inward, then focusing on 'electricity' and finally on 'cooling.' A thorough understanding of the test chamber's principles and operational processes is essential for accurate fault diagnosis.
    Read More
  • key points of choosing high and low temperature test chamber key points of choosing high and low temperature test chamber
    Jun 06, 2025
    Eight key points of choosing high and low temperature test chamber: 1.No matter whether it is selected for high and low temperature test chamber or other test equipment, it should meet the temperature conditions specified in the test requirements; 2.To ensure the uniformity of temperature in the test chamber, forced air circulation or non-forced air circulation mode can be selected according to the heat dissipation of samples; 3.The heating or cooling system of the high and low temperature test chamber shall have no effect on the samples; 4.The test chamber should be convenient for the relevant sample rack to place samples, and the sample rack will not change its mechanical properties due to high and low temperature changes; 5. High and low temperature test chamber should have protective measures. For example: there are observation window and lighting, power disconnection, over-temperature protection, various alarm devices; 6. Whether there is remote monitoring function according to customer requirements; 7. The test chamber must be equipped with automatic counter, indicator light and recording equipment, automatic shutdown and other instrument devices when carrying out the cyclic test, and it must have good recording and display functions; 8.According to the sample temperature, there are two measurement methods: upper wind and lower wind sensor temperature. The position and control mode of temperature and humidity control sensor in the high and low temperature test chamber can be selected according to the customer's product test requirements to select the appropriate equipment.  
    Read More
1 2
A total of2pages

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

home

products

WhatsApp

contact us