banner
Home

Temperature Environment Test Chamber

Temperature Environment Test Chamber

  • Operation of Composite Salt Spray Test Chamber: Pitfall Avoidance Guide and Core Precautions
    Dec 13, 2025
        The composite salt spray test chamber is core equipment for corrosion reliability testing of products such as metals and coatings, and its test data directly affects quality evaluation. However, negligence of details during actual operation often leads to distorted results. This article sorts out common mistakes and precautions to improve the standardization of tests. I. Common Mistakes During Operation (1) Pre-test Preparation: Basic Omissions Lay Hidden Risks 1. Non-standard salt solution preparation: Estimating salt dosage by experience or failing to use a balance with an accuracy of ≥0.1g easily causes concentration deviation from standards (e.g., 5% sodium chloride solution); using tap water instead of deionized water introduces interfering ions; injecting insufficiently mixed solution tends to clog nozzles and result in uneven salt spray distribution. 2. Improper sample treatment and placement: Unremoved oil and rust on the sample surface prevent salt spray from contacting the substrate; overlapping samples, insufficient spacing, or failure to align with the spray direction at an angle of 15°–30° all lead to data deviation. 3. Perfunctory equipment inspection: Insufficient water in the liquid storage tank may interrupt the test; salt deposits blocking nozzles and air pipes cause inadequate salt spray; uncalibrated temperature and humidity sensors result in loss of control over test conditions. (2) During the Test: Improper Operation Causes Data Invalidity 1. Arbitrary adjustment of test parameters: Unauthorized modification of parameters such as temperature and salt spray volume leads to inaccurate data; frequent door opening midway disrupts the stable temperature and humidity environment inside the chamber. 2. Neglect of abnormal condition handling: Failure to shut down and troubleshoot anomalies (e.g., uneven salt spray, temperature/humidity fluctuations) results in distorted data. For instance, unaddressed abnormal salt spray deposition (1–2mL/(80cm²·h)) will make corrosion evaluation deviate from actual conditions. 3. Incomplete data recording: Only recording the start and end time without real-time logging of parameters (e.g., temperature and humidity); failing to timely document sample corrosion phenomena impairs subsequent analysis.  (3) Post-test: Improper Follow-up Affects Equipment Service Life and Data Analysis 1. Inadequate equipment cleaning: Residual salt solution corrodes the chamber and pipelines; salt deposits block nozzles and atomizers; corrosion products on the chamber wall contaminate subsequent samples. 2. Rash sample treatment and analysis: Failure to rinse and dry samples in accordance with standards allows residual salt to continue corroding the samples; relying solely on visual observation without instrumental quantitative data leads to unscientific conclusions. 3. Lack of equipment maintenance: Not inspecting sealing rings, lubricating components, or cleaning filters results in frequent equipment failures and shortened service life. II. Core Precautions: Ensure Test Accuracy and Equipment Stability 1. Standardize solution preparation: Prepare solutions in accordance with standards such as GB/T 10125, weigh salt with a precision balance and use deionized water, verify concentration with a densitometer, and inject the solution after thorough mixing and standing. 2. Standardize sample operation: Degrease, derust, and dry samples; ensure sample spacing ≥20mm, distance from chamber wall ≥50mm, and place samples at 15°–30° to prevent shielding. 3. Comprehensively inspect equipment before testing: Check water level, remove salt deposits, calibrate sensors, and verify airtightness to ensure test conditions meet requirements. 4. Stabilize and control test parameters: Prohibit modification of core parameters; limit door opening time to ≤1 minute; record data hourly; shut down and troubleshoot anomalies before retesting. 5. Maintain and clean equipment post-test: Drain and rinse the equipment thoroughly; process samples in a standardized manner and conduct instrumental analysis; regularly replace filters, inspect sealing rings, and keep detailed maintenance records. III. Conclusion     The quality of composite salt spray test chamber operation hinges on standardized procedures. Avoiding common mistakes and strictly following precautions ensures data accuracy to support product quality control, while extending equipment service life and reducing costs. Standardization is the core of accurate testing.
    Read More
  • Composite Salt Spray Test Chamber: Core Performance Analysis
    Dec 12, 2025
        In the corrosion resistance testing of metal materials, coatings and components, the composite salt spray test chamber is an indispensable core equipment. It breaks through the limitations of traditional single salt spray tests, can simulate complex natural environments, and provides accurate data for product reliability evaluation. The following analyzes its key performance from four core dimensions. I. Accurate Environmental Parameter Control Capability Composite salt spray tests have extremely high precision requirements for parameters such as temperature, humidity and salt spray concentration, and the control performance of the equipment directly determines the validity of test data. Temperature and Humidity Control: Supports wide-range adjustment of temperature (5℃-50℃) and humidity (45%-98%RH) in the salt spray chamber. The temperature fluctuation is ≤±0.5℃ and the humidity deviation is ≤±3%RH, which can stably simulate typical corrosive environments such as high humidity in coastal areas and high temperature with high salt. Salt Spray Concentration Regulation: The salt water injection volume is controlled by a high-precision metering pump, and the salt spray sedimentation volume is stably maintained at 1-2ml/(80cm²·h). It supports the preparation of sodium chloride solution with a concentration of 5%-20%, and is also compatible with special test requirements such as acetic acid and copper-accelerated acetic acid salt spray (CASS). II. Multi-dimensional Environmental Simulation Capability Different from traditional salt spray machines, the core advantage of composite models lies in the simulation of "composite" scenarios, which can reproduce the synergistic corrosion effect of "salt spray + humidity + temperature cycle" in natural environments. Multi-mode Switching: Supports seamless switching between three modes: continuous salt spray, intermittent salt spray and damp-heat cycle. For example, it simulates the alternating environment of high-temperature salt spray during the day and low-temperature high-humidity at night, which is closer to the actual service scenario of products. Full-range Corrosion Coverage: The diameter of salt spray particles is controlled at 1-5μm. Through the annular layout of multiple nozzles, the uniform distribution of salt spray in the chamber is realized, covering the test samples without dead ends, ensuring the comparability of corrosion degrees of samples at different positions. III. Stable and Reliable Operation Performance Corrosion resistance tests often last for several days to months, and the long-term operation stability of the equipment is the key to ensuring the smooth completion of the test. Anti-corrosion Structure Design: The inner tank of the test chamber is made of 316L stainless steel, and the nozzles are made of salt-corrosion-resistant ceramic materials, which can effectively resist the corrosion of the equipment itself by salt spray and extend its service life. Intelligent Protection Mechanism: Equipped with functions such as low salt water level alarm, over-temperature protection and compressor overload protection. It will automatically shut down and give a prompt when parameters are abnormal, avoiding test interruption or sample damage. IV. Convenient Operation and Data Management Humanized operation design and complete data recording functions improve test efficiency and ensure data traceability. Intelligent Control: Adopts a 7-inch touch screen, supports test parameter presets and automatic process operation, and can store more than 100 sets of test schemes, facilitating the call of repeated tests for similar products. Data Visualization: Displays real-time data such as temperature, humidity and salt spray sedimentation in the chamber, supports regular data printing and USB export, and meets the standardization requirements of test reports. Conclusion     The composite salt spray test chamber’s core performance lies in the integration of "precision control, multi-dimensional simulation and stable operation". For corrosion resistance testing of auto parts, marine engineering equipment or electronic components, a reliable chamber provides strong data support for product quality enhancement.
    Read More
  • Environmental Test Chamber: The Ultimate Verifier of Product Reliability
    Dec 11, 2025
        As a "quality gatekeeper" in industrial manufacturing and R&D, environmental test chambers simulate extreme conditions (high/low temperature, damp heat, salt spray, etc.) to pre-expose product defects and verify reliability, acting as the hidden "ultimate examiner" in labs. Core Value: Preempting Potential Failures Products face diverse harsh environments in real use: Antarctic mobile phones endure -40℃ cold, coastal auto parts resist salt spray corrosion, and aerospace components withstand drastic temperature-humidity fluctuations. Post-market exposure of environmental adaptability issues triggers safety risks, massive economic losses, and brand damage. The chamber’s core role is to artificially replicate extreme environments or accelerated stresses in labs, condensing years of natural environmental testing into days/hours. It proactively identifies material aging, structural deformation, and performance degradation, providing data for R&D optimization and quality control. Mainstream Types: Targeted Testing for Scenarios Environmental test chambers are not one-size-fits-all; different types match specific testing needs: High/Low Temperature Test Chamber: The basic type, simulating -70℃ to 150℃ (extended ranges for special models) to test product stability under temperature shocks, e.g., chip startup performance and plastic part thermal deformation. Temperature Humidity Test Chamber: Adds 30%RH-98%RH humidity control to high/low temperature functions, simulating plum rain or tropical environments to assess moisture/mildew resistance, such as appliance casing rust-proofing and textile color fastness. Salt Spray Test Chamber: Sprays neutral/acidic salt spray to simulate marine/industrial corrosion, testing metal and coating corrosion resistance for automotive, marine, and hardware industries. Comprehensive Environmental Test Chamber: Integrates temperature, humidity, vibration, and light to replicate complex scenarios (e.g., aerospace launch/operation environments), serving as core equipment for high-end R&D. Procurement & Usage: Key to Avoiding Risks Demand Matching: Avoid over-pursuing ultra-wide ranges; define temperature/humidity limits and accuracy based on standards (IEC, GB, MIL-STD). For example, consumer electronics do not require military-grade wide-temperature equipment to prevent resource waste. Core Performance Focus: Prioritize temperature uniformity, temp-humidity fluctuation (control accuracy), and temperature rise/fall rate (test efficiency), as these directly affect data reliability. Safety features (over-temperature alarm, water shortage protection) are also non-negligible. Industry Trends: Intelligent & Green Upgrades Driven by Industry 4.0, chambers are evolving toward intelligence: IoT modules enable remote monitoring and data traceability, while AI optimizes test parameters to cut manual intervention. Greenization is another direction—advanced refrigeration systems and insulation materials reduce energy consumption, aligning with green manufacturing concepts. From consumer electronics and aerospace to automotive and medical devices, environmental test chambers underpin product reliability, laying a foundation for enterprise R&D and innovation. In the "quality-first" era, their value as the "ultimate examiner" will grow increasingly prominent.
    Read More
  • Rapid Temperature Change Test Chamber: Accurately Simulating Environments to Safeguard Product Reliability
    Dec 10, 2025
        In high-end manufacturing fields (aerospace, automotive electronics, consumer electronics, etc.), a product's ability to adapt to extreme temperature fluctuations directly determines its service life and safety. As core equipment for simulating environmental stress, the rapid temperature change test chamber becomes an "essential tool" in product reliability testing, relying on its advantages of "fast temperature rise/fall + precise temperature control." 1. Core Features: Speed & Precision Advantages Fast temperature change rate: Conventional equipment reaches 1-3℃/min, while professional models can achieve 5-20℃/min (some special types exceed 30℃/min). It simulates extreme temperature cycles (-70℃ to 150℃) in a short time, greatly reducing test cycles. High temperature field stability: Adopts multi-zone heating and vortex air flow control; internal temperature uniformity is controlled within ±2℃, avoiding test errors from local temperature differences and ensuring reliable data. Intelligent control: Equipped with smart systems supporting custom temperature curve programming (presets over 100 test programs). Real-time data collection and curve display help engineers track the test process and improve efficiency. 2. Typical Applications: Industry-Specific Scenarios Core value: Expose potential product defects under temperature cycles. Key application fields include: Electronics Industry: Tests mobile phones, chips, circuit boards, etc. Detects issues like solder joint detachment and component aging to avoid malfunctions (crashing, short circuits) during use. Automotive Field: Verifies on-board radar, battery packs, sensors. Simulates -40℃ to 85℃ cycles to ensure adaptability to extreme cold and heat. Aerospace: Simulates space temperature stress for satellite components and aviation instruments, ensuring normal operation at high altitudes with severe temperature changes. 3. Key Usage Notes: Ensure Test Quality Standard sample placement: Distribute samples evenly to avoid blocking air ducts; keep a ≥5cm distance from the chamber wall to prevent local temperature interference. Regular maintenance & calibration: Inspect vulnerable components (sealing strips, heaters, sensors) regularly; conduct temperature accuracy calibration at least once a year to maintain optimal performance.     As the "gatekeeper" of product reliability testing, its performance directly affects quality judgment. Select industry-suitable equipment and standardize operations to make each test a reliable "touchstone" for product quality.
    Read More
  • Common Problems and Solutions for Dual 85 Testing of Temperature and Humidity Test Chambers
    Dec 09, 2025
        This guide summarizes key issues and solutions for temperature & humidity test chambers during dual 85 testing (85℃, 85% RH), focusing on quick troubleshooting and long-term maintenance for operators and customers. I. Core Issues & Resolution System Each issue includes root cause, immediate solution, and long-term prevention (except for defect exposure). 1. Failure to Reach 85% RH Root Cause: Compressor over-dehumidifies—evaporator temperature below dew point (79-80℃) causes condensation, outpacing humidification. Immediate Solution: Disable compressor; run only heating and humidification to maintain 85℃ and avoid condensation. Prevention: Regularly calibrate humidifier atomization volume and check evaporator temperature sensor accuracy. 2. Temperature Out-of-Control/Fluctuations Root Cause: Mainly faulty solid-state relays (keeps heating elements on), plus aging heating tubes or defective temperature sensors. Immediate Solution: Cut power; inspect circuit with multimeter (relay on-off, heating tube damage, sensor accuracy) and replace faulty parts. Prevention: 10-15min pre-calibration before testing; replace vulnerable parts (relays, sensors) every 1000 operating hours. 3. Water Marks/Condensation on Products Root Cause: Residual oil/dust on products, or dense samples blocking air ducts (poor circulation, localized high humidity). Immediate Solution: Pause test; clean products with anhydrous ethanol, dry, and reposition samples for proper spacing. Prevention: Establish pre-test cleaning standards; clean air duct filters regularly and optimize sample rack layout. 4. Incorrect Operation Logic Root Cause: Operator errors—misactivated refrigeration, wrong parameters (fast heating, delayed humidification), or mismatched operation modes. Immediate Solution: Reset program (disable refrigeration, set 85℃/85% RH, sync humidification with heating). Prevention: Develop SOPs; new employees must pass operation assessments (including simulated faults). 5. Material/Process Defect Exposure Root Cause: Extreme environment accelerates aging—e.g., poor heat-resistant EVA film hydrolyzes (yellowing, delamination); leaky electronic packages cause corrosion/short circuits. Measures: Inspect products post-test, record defects; judge qualification by material standards; optimize processes (e.g., use hydrolysis-resistant EVA, enhance sealant density).
    Read More
  • What makes industrial vacuum ovens indispensable for precision manufacturing?
    Dec 06, 2025
        In precision manufacturing fields such as electronics, semiconductors, and aerospace, industrial vacuum ovens are by no means simple "heating equipment". Instead, they have become core equipment for ensuring product quality by virtue of their ultimate control over the environment. Their performance advantages always revolve around "precision temperature control and efficient drying in a vacuum environment", which directly determine the reliability and qualification rate of downstream products. I. Vacuum Performance: From Environmental Control to Quality Assurance     Vacuum degree is the core indicator of industrial vacuum ovens, which is directly related to drying efficiency and material safety. High-quality equipment can usually achieve a high vacuum degree below 10Pa, and some semiconductor-specific models can even reach the level of 1Pa. This performance brings dual values:     Oxidation Prevention in Low-Oxygen Environment: The oxygen content is greatly reduced in a vacuum state, which effectively prevents heat-sensitive and oxidizable materials (such as positive and negative electrode materials of lithium batteries, precision metal components) from oxidative discoloration and performance degradation during the heating process. It is particularly suitable for the processing of high-strength alloy components in the aerospace field.     Boiling Point Reduction to Accelerate Drying: The vacuum environment significantly lowers the boiling point of solvents. For example, the boiling point of water is only about 55℃ under a vacuum of -0.098MPa, which can quickly remove moisture or organic solvents inside the material at low temperatures. This solves the problem of "surface crusting and internal dampness" in traditional hot air drying, and is especially suitable for moisture removal of electronic components before packaging.     It is worth noting that the stability of the vacuum system is also crucial. Ovens equipped with high-quality vacuum pumps and pressure sensing devices can realize real-time monitoring and automatic compensation of vacuum degree, avoiding process failure caused by vacuum leakage. II. Temperature Control Performance: Dual Perfection of Precision and Uniformity     The strict temperature requirements in industrial production have promoted the upgrading of vacuum ovens from "rough heating" to "precision temperature control". Their core performance is reflected in two aspects: temperature control precision and temperature uniformity: 1. High-Precision Temperature Control: Equipment adopting a PID closed-loop temperature control system can achieve a temperature control precision of ±1℃, and some high-end models even realize a fluctuation control of ±0.5℃. This precision ensures that the processing conditions of each batch of materials are completely consistent in mass production. For example, in the semiconductor chip packaging process, it can accurately control the melting and solidification temperature of the solder to avoid cold soldering problems. 2. Whole-Domain Temperature Uniformity: Through the distributed layout of multiple heating tubes and the optimized design of hot air circulation, the temperature dead zones in the oven are effectively eliminated. The temperature difference between various points in the working chamber is usually ≤±3℃. For special-shaped materials such as large-area PCB boards and photovoltaic modules, a uniform temperature field can avoid deformation caused by local stress concentration. III. Efficiency and Adaptability: Meeting Industrial Production Needs     The high productivity requirements in industrial scenarios require vacuum ovens to balance efficiency and flexibility while ensuring performance: • Rapid Temperature Rise and Fall: Equipment equipped with stainless steel heating tubes and high-efficiency thermal insulation layers can achieve a heating rate of 5-10℃/min. During the cooling stage, the combination of vacuum bubble breaking and forced air cooling greatly shortens the processing time of a single batch, adapting to the fast-paced production in the electronics industry. • Multi-Specification Adaptability: From small laboratory-level chambers (below 50L) to large tunnel-type vacuum ovens for production lines (with a volume of over 1000L), selections can be made flexibly according to material sizes. Some equipment also supports customized layered shelves and explosion-proof designs to meet the needs of special industries such as chemical engineering and military industry. IV. Stability and Intelligence: Invisible Guarantee for Industrial Production     In continuous production, the stability of equipment directly affects productivity. Modern industrial vacuum ovens are generally equipped with: • Multiple Safety Protections: Devices such as over-temperature alarms, abnormal vacuum shutdown, and door lock interlock avoid safety accidents caused by operational errors. • Intelligent Control: The touch screen operation interface supports process parameter storage (10-20 groups of formulas can be preset). Some models can be connected to the MES system to realize real-time upload and remote monitoring of production data, reducing the cost of manual intervention. In conclusion, the core performance of industrial vacuum ovens lies in "achieving a precise balance between temperature and efficiency based on a vacuum environment". In today's era where precision manufacturing is increasingly dependent on process stability, selecting a vacuum oven that adapts to one's own productivity and material characteristics is not only the key to improving product quality, but also an important part for enterprises to build core competitiveness.
    Read More
  • What do you know about test chamber safety protection settings?
    Dec 04, 2025
        Test chambers, as core equipment for environmental reliability testing across industries such as electronics, automotive, aerospace, and new energy, rely on a multi-dimensional, redundant safety protection system to ensure long-term operational stability, personnel safety, and the integrity of test samples and equipment. Beyond basic safety guarantees, these protection mechanisms are designed to adapt to complex test scenarios and extreme environmental conditions. Here’s a professional and detailed breakdown of the core protection settings: 1. Refrigeration System Protection Compressor protection: Equipped with overpressure, overheating, and overcurrent triple protection mechanisms. Real-time monitoring of operating pressure, exhaust temperature, and working current prevents compressor burnout, cylinder scuffing, or seal damage caused by abnormal conditions such as refrigerant leakage, pipeline blockage, or voltage fluctuations. Refrigerant protection: Integrated high/low pressure switches and overload protection devices continuously monitor the refrigerant circulation system. When pressure exceeds the safe threshold or the system is overloaded, the device automatically cuts off the corresponding circuit and triggers an alarm, ensuring stable refrigerant flow and avoiding system damage due to pressure anomalies. 2. Test Area Protection Multi-layer over-temperature protection (redundant design): 1st layer: Adjustable high/low temperature over-temperature protection, dynamically linked to the set operating control temperature. When the test area temperature deviates from the set range by a preset value, the system automatically adjusts the heating/cooling module or pauses operation to prevent sample damage. 2nd/3rd layers: Independent electronic high-temperature over-temperature protection devices (double redundancy). Directly connected to the power supply circuit, these devices bypass the main control system to cut off power immediately if the 1st layer protection fails, eliminating potential fire hazards or equipment damage caused by excessive temperature. Fan motor overcurrent protection: Monitors the operating current of the test area circulation fan. If the motor jams, wears, or experiences current surges due to other faults, the protection system triggers an alarm and cuts off power to avoid motor burnout and ensure uniform temperature distribution in the test chamber. Fault alarm system: Integrates sound and light alarms with a digital display. When abnormalities occur (e.g., over-temperature, water shortage, or sensor failure), the system immediately cuts off the relevant power supply, activates the alarm, and displays the specific fault cause on the control panel for quick troubleshooting. Active water shortage reminder: For humidity-controlled test chambers, a real-time water level monitoring sensor in the humidity water tank triggers an audible and visual alarm when the water level is too low. The system pauses the humidity control function to prevent dry burning of the humidifier and ensure the stability of the humidity control system. Dynamic high/low temperature protection: Real-time adapts to the set test parameters (temperature range, rate of change). During rapid temperature rise/fall or extreme temperature tests, the protection system dynamically adjusts the safety threshold to avoid false triggers while ensuring comprehensive protection against temperature anomalies. 3. General Electrical Protection Main power supply protection: Equipped with phase sequence and phase loss protection devices. Automatically detects the phase sequence and integrity of the three-phase power supply; if phase sequence reversal or phase loss occurs, the system locks the power supply and alarms to prevent damage to the compressor, fan, and other core components caused by incorrect power supply. Short circuit & leakage/surge protection: Configured with high-sensitivity short circuit breakers to quickly cut off power in case of line short circuits, avoiding electrical fires or component burnout. Equipped with leakage circuit breakers and RC electronic surge protectors to prevent electric shock hazards caused by equipment leakage and suppress voltage surges from the power grid, protecting the control system and electronic components. Sensor self-detection: Real-time self-inspection of temperature, humidity, and other key sensors. If a sensor malfunctions (e.g., signal loss, inaccurate measurement), the system immediately alarms and switches to backup sensor data (if equipped) or pauses operation to ensure the reliability of test data and prevent misoperation due to false sensor signals. Dry heating protection (humidity water circuit): For the humidity water circuit and humidifier, a dedicated dry heating protection device monitors the water level and heating status. If the humidifier heats without water, the protection system cuts off the heating power immediately to avoid humidifier burnout and extend the service life of the humidity system. Expandable protection: Reserved 2 fault detection input interfaces, supporting customized addition of special protection modules (e.g., gas leakage protection for flammable/explosive test samples, pressure protection for sealed test chambers) to meet the safety requirements of industry-specific test scenarios. These multi-layered, redundant, and configurable protection mechanisms form a comprehensive safety barrier for test chambers. Whether in routine reliability testing or extreme environmental simulations, they ensure the equipment operates stably and reliably, while maximally safeguarding the safety of operators, test samples, and the equipment itself—becoming a key guarantee for the accuracy of test results and long-term operational efficiency.
    Read More
  • Customization Process of Walk-in Environmental Test Chambers: A Professional Guide from Requirement to Delivery
    Dec 03, 2025
        As core equipment for industrial testing, the customization level of walk-in environmental test chambers directly determines testing accuracy and efficiency. This article breaks down the entire process from requirement communication to final delivery, helping enterprises clearly grasp the key nodes of customization. 1. Accurate Requirement Communication: Clarify Core Parameters The first step in customization is to define core technical parameters, which lay the foundation for subsequent design. Size Range: Covering small test spaces of 4m³ to large walk-in test chambers of 260m³, the size should be determined based on the volume, quantity of test samples and operational space requirements. Temperature & Humidity Range: It can generally achieve temperature control of -70℃~+180℃ and humidity control of 30%R.H~98%R.H. For special scenarios, the range can be further expanded to -73℃~+177℃ (integral type). Control Method: Multiple options are available, from basic microchip LED displays to PLC programmable logic controller touch screens, and can also be upgraded to remote centralized control systems to meet different operation and management needs. Structure Type: Selection should be based on application scenarios, with parameters of three mainstream types as follows: Test Type Temperature Range Humidity Range Temperature Change Rate Integral Type -73℃~+177℃ 30%~95%RH 4~5℃/min, or faster Assembled Type -68℃~+85℃ 30%~95%RH 1~2℃/min Steady-state Type -20℃~+50℃ 30%~95%RH N/A 2. Scheme Design & Confirmation: Balance Professionalism and Practicality After clarifying requirements, the technical team will issue a customization scheme, which mainly includes three parts: Structural Design: Based on size and type, plan the layout of the test chamber's door, observation window and sample rack to ensure operational convenience and airtightness.  System Matching: Equip with corresponding refrigeration, heating, humidification and dehumidification systems to ensure temperature and humidity control accuracy, and configure hardware and software according to the control method. Compliance Verification: The scheme must conform to relevant industry standards (such as GB/T, IEC, etc.), and confirm with the customer whether it needs to meet specific industry testing specifications. After scheme confirmation, detailed drawings and technical agreements will be generated to clarify the rights, obligations and delivery standards of both parties. 3. Production & Manufacturing: Strictly Control Process and Quality Entering the production stage, the process will be controlled around the two cores of "accuracy" and "stability": Core Component Procurement: Select high-reliability compressors, sensors, controllers and other core components to ensure long-term operational stability of the equipment. Modular Production: Assembled equipment adopts modular manufacturing to reduce on-site installation errors; integral equipment undergoes integrated assembly and preliminary debugging. Factory Inspection: Each piece of equipment must undergo no-load temperature and humidity calibration and operational stability testing. Only after confirming that the parameters meet the design requirements can shipment be arranged. 4. Installation, Commissioning & Delivery: Ensure On-site Application After the equipment arrives at the site, the professional team will provide full-process services: On-site Installation: Carry out equipment positioning, pipeline connection and circuit debugging according to site conditions; for assembled equipment, ensure airtight connection of each module. Accuracy Calibration: Combine the customer's testing needs, use professional instruments to perform on-site calibration of temperature and humidity uniformity and fluctuation to ensure compliance with test requirements. Training & Delivery: Provide equipment operation and maintenance training for the operation team, and deliver technical materials such as operation manuals and calibration reports to complete the final acceptance.     Would you like me to supplement an English Version of Walk-in Environmental Test Chamber Customization Requirement Confirmation Form? It will list key parameter check items and common questions to facilitate quick alignment of requirements between you and your customers.
    Read More
  • Operation Notes for Rapid Temperature Change Test Chambers: Don't Overlook These Key Points
    Dec 02, 2025
        As a core device for environmental reliability testing, the rapid temperature change test chamber is widely used in electronics, automotive, and other industries due to its ability to achieve drastic temperature variations. Its high/low temperature performance and rapid temperature change capability directly affect test data accuracy, operational safety, and equipment service life. Below are the core operational precautions: I. Pre-Startup: Conduct Basic Inspections Comprehensive pre-startup checks are critical for preventing malfunctions, focusing on "medium, status, and connections": Medium & Pipeline Inspection: Verify that the cooling system's liquid level and pressure meet standards, with no pipeline leakage or blockage. Check the refrigerant system pressure to avoid cooling failure or compressor damage due to insufficient medium. Equipment Status Confirmation: Ensure the chamber door seal is intact (poor sealing reduces temperature change rate and increases energy consumption). Keep the chamber interior clean and free of debris, and ensure sensor surfaces are free of oil and dust to avoid temperature measurement interference. Electrical Connection Check: Confirm power and control cables are securely connected, and the grounding resistance complies with specifications (≤4Ω) to prevent electric leakage or electromagnetic interference. II. Sample Placement: Prioritize Scientific Standards Proper sample placement ensures test authenticity, adhering to the principles of "no interference, no overrun, easy monitoring": Weight & Volume Control: Total sample weight must not exceed the rated load. Single sample volume ≤ 1/3 of the working chamber. Maintain a distance of ≥5cm from the chamber walls and sensors to avoid uneven local temperature caused by airflow blockage. Sample Compatibility: Never place flammable, explosive, corrosive, or toxic samples. For heat-generating samples, specify power in advance to ensure compatibility with the equipment's heat dissipation capacity and prevent overload. Fixing & Wiring Specifications: Secure samples with dedicated brackets to prevent displacement during temperature changes. Use high-temperature resistant insulated wires for energized tests to avoid short circuits and aging. III. Operation Process: Precise Monitoring & Adjustment Dynamic monitoring during operation guarantees test reliability, focusing on "parameters, status, and abnormalities": Parameter Setting & Verification: Set temperature range, change rate, and other parameters per standards and re-verify. Adjust only after the equipment stabilizes to avoid system fluctuations. Operation Status Monitoring: Real-time monitor temperature curves and indicator lights to ensure the deviation between actual and set temperatures ≤ ±1℃. Listen for abnormal noises from components like the compressor and shut down immediately if detected. Abnormal Handling: If the equipment triggers over-temperature, overload, or other protections, do not force reset. First troubleshoot the cause (e.g., abnormal sample heating, unstable voltage) before restarting. IV. Post-Test: Standardized Shutdown & Maintenance Proper post-test procedures extend equipment life, following three steps: "cooling, cleaning, and recording": Gradual Cooling to Prevent Damage: After testing, open the door only when the chamber temperature drops to room temperature (20-25℃) and the temperature difference with the outside ≤10℃, avoiding sample condensation or chamber wall damage. Cleaning & Maintenance: Wipe the chamber interior and door seal with a dry cloth. Use dedicated cleaners for leaked substances. Remove dust from the equipment exterior to ensure unobstructed heat dissipation. Data & Status Recording: Document test parameters, curves, and abnormalities. After turning off the power, cut off the cooling medium supply and organize wires and brackets. V. Long-Term Maintenance: Extend Equipment Lifespan Regular maintenance prolongs service life: Monthly: Check the door seal elasticity and replace if aged. Quarterly: Clean the condenser and evaporator. Annually: Arrange professional inspection and maintenance of the compressor and refrigeration system. The core of test chamber operation is "safety first, standardized operation, and precise monitoring." Strict adherence to the above precautions ensures safety, reliable test data, and extended equipment life, providing strong support for product reliability verification.
    Read More
  • How to Achieve Precise Temperature Control in High-Low Temperature Test Chambers? The Q8 Series Controller Has the Answer
    Nov 29, 2025
    As the "control core" of high-low temperature test chambers, the Q8 Series Controller delivers stable support for environmental reliability testing with full-scenario adaptability, ultra-high precision, and multiple safety designs. Whether for extreme testing of electronic components or weather resistance verification of new materials, its rich functions and user-friendly design meet the rigorous requirements of scientific research, industrial production, and other fields. I. Intuitive Touch Interaction: Doubling Operational Efficiency Adopting full-touch interaction, the Q8 Controller features a high-definition touchscreen with sensitive response, enabling parameter setting, program startup, and other operations with simple finger taps—no professional training required for new users. The customizable interface allows pinning frequently used functions, significantly reducing configuration time for complex tests and adapting to high-frequency, multi-batch testing scenarios. II.  0.01-Class Precision: Core Guarantee for Accurate Data Equipped with a high-precision data acquisition module and intelligent PID algorithm, the Q8 achieves 0.01-class temperature control precision, capturing real-time temperature fluctuations inside the chamber and adjusting rapidly. Within the wide temperature range of -80℃~150℃, the fluctuation is stabilized at ±0.01℃, avoiding temperature deviations in sensitive tests such as semiconductor and aerospace component testing, and providing authoritative data for product reliability evaluation. III. Versatile Adaptability: Meeting Multi-Scenario Needs Compatible with PT100, thermocouples, and other sensors, the Q8 supports flexible switching to reduce equipment upgrade costs. Its cooling output function precisely controls the refrigeration system to minimize energy waste, while the transmission output converts temperature data into standard electrical signals, seamlessly connecting to data acquisition systems for automatic upload and traceability of test data. IV.  Massive Storage: Intelligent Manager for Complex Processes Catering to multi-stage testing needs (e.g., automotive parts), the Q8 supports storage of 100 process programs, each with up to 50 steps. Operators can preset parameters such as temperature and holding time to simulate working conditions like day-night cycles and extreme temperature shocks. Programs can be activated with one click for continuous operation, enhancing the standardization and efficiency of batch testing. V.  EVT Function: Early Warning Barrier for Test Safety The Q8’s EVT (Event Verification Test) function monitors temperature abnormalities, sensor failures, and other issues in real time. When thresholds are triggered, it activates audio-visual alarms and records fault information. Supporting hierarchical fault handling, it automatically adjusts parameters to resume testing for minor anomalies and shuts down urgently for severe faults, safeguarding unattended long-duration tests. Conclusion: Empowering Test Reliability with Strong Capabilities Integrating intuitive touch operation, 0.01-class precision, versatile adaptability, and comprehensive safety guarantees, the Q8 Controller fully meets the core requirements of high-low temperature testing. Whether for precise scientific research or production quality control, its stable performance and intelligent design serve as the core competitiveness of test chambers, helping industries improve product quality.
    Read More
  • Core Faults and Troubleshooting of Thermal Shock Chambers
    Nov 27, 2025
    I. Temperature-related Issues Failure to reach set temperature: Check operation of heater/compressor, replace if damaged; calibrate sensor, replenish refrigerant if leaking; replace aging sealing strips. Slow shock rate: Clean air duct filter/condenser dust; inspect fan and switching valve, lubricate or replace if stuck.  Large temperature fluctuation: Calibrate thermostat PID parameters; reduce sample load (≤30% of chamber volume), place evenly without blocking air ducts. II. Refrigeration-related Issues Slow cooling in low-temperature zone: Clean condenser fins; detect leaks and replenish refrigerant; activate defrost program or replace expansion valve. Frequent compressor on/off: Stabilize power supply voltage, improve equipment room ventilation; replenish refrigerant or replace refrigeration oil. High-pressure alarm: Clean condenser and inspect cooling fan. III. Mechanical-related Issues Poor door sealing: Adjust door latch, replace aging sealing strips; calibrate chamber levelness. Stuck transfer mechanism: Clean guide rail debris and lubricate; calibrate position sensor. Abnormal noise (fan/valve): Add lubricating grease, replace worn bearings; clean valve impurities. IV. Electrical-related Issues Failure to start: Reset emergency stop button, inspect power supply/air switch; rewire if grounding is poor. Abnormal display: Reconnect cable, test power module; restore factory settings after backing up parameters. Alarm code triggered: Troubleshoot per code prompt (e.g., E1 overheating: check heater/sensor); contact manufacturer for repeated alarms. V. Key Notes Power off before troubleshooting; refrigeration system maintenance requires professional operation. Clean filter weekly, inspect seals monthly, and calibrate sensor annually.
    Read More
  • What should we pay attention to when using a thermal shock test chamber (water-cooled)?
    Nov 22, 2025
    I. Before Operation Use deionized water or distilled water as cooling water (to prevent scale formation); control temperature at 15-30℃, pressure at 0.15-0.3MPa, flow rate ≥5L/min. Clean the Y-type filter element in advance to ensure unobstructed water flow. Inspect water supply/drainage pipelines for secure connections, no leakage or kinking; keep drainage ports unobstructed with a height difference ≥10cm. Ensure the environment is ventilated and dry, grounding resistance ≤4Ω, and power supply (AC380V±10%) stable. Keep the inner chamber and shelves clean. Sample volume ≤1/3 of effective capacity, with weight evenly distributed on shelves. Seal moisture-sensitive parts of non-hermetic samples to avoid condensation affecting test accuracy. II. During Operation Real-time monitor cooling water pressure, flow rate and temperature. Immediately shut down for troubleshooting (pipeline blockage, leakage or chiller failure) if pressure drops sharply, flow is insufficient or temperature exceeds 35℃. Set high/low temperature parameters per GB/T, IEC and other standards (not exceeding rated range); control heating/cooling rate ≤5℃/min. Prohibit instantaneous switching between extreme temperatures. Do not open the door arbitrarily during operation (to prevent scalding/frostbite from hot/cold air). Use protective gloves for emergency sample handling. Shut down immediately for maintenance upon alarm (overtemperature, water shortage, etc.); prohibit forced operation. III. After Test Turn off power and cooling water inlet/outlet valves; drain residual water in pipelines. Clean the water tank and replace water monthly; add special water stabilizer to extend pipeline service life. Wipe the inner chamber and shelves after temperature returns to room temperature. Clean the air filter (1-2 times monthly); inspect pipeline seals and replace aging/leaking ones promptly. For long-term non-use: Power on and run for 30 minutes monthly (including water cooling system circulation), inject anti-rust protection fluid into pipelines, and cover the equipment with a dust cover in a dry, ventilated place. IV. Prohibitions Prohibit using unqualified water (tap water, well water, etc.) or blocking filters/drainage ports (to avoid affecting heat dissipation). Prohibit overloading samples or unauthorized disassembly/modification of water cooling pipelines/core components. Repairs must be performed by professionals. Prohibit frequent start-stop (wait ≥5 minutes after shutdown before restarting). Prohibit placing flammable, explosive or corrosive substances.
    Read More
1 2
A total of2pages

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

home

products

WhatsApp

contact us