banner
Home

Temperature Test Chamber

Temperature Test Chamber

  • How to Choose the Appropriate Cooling Method for Test Chambers?
    Sep 09, 2025
    Air cooling and water cooling are two mainstream heat dissipation methods in refrigeration equipment. The most fundamental difference between them lies in the different media they use to discharge the heat generated by the system into the external environment: air cooling relies on air, while water cooling relies on water. This core difference has given rise to numerous distinctions among them in terms of installation, usage, cost and applicable scenarios.   1. Air-cooled system The working principle of an air-cooling system is to force air flow through a fan, blowing it over its core heat dissipation component - the finned condenser, thereby carrying away the heat in the condenser and dissipating it into the surrounding air. Its installation is very simple and flexible. The equipment can operate simply by connecting to the power supply and does not require additional supporting facilities, thus having the lowest requirements for site renovation. This cooling performance is significantly affected by the ambient temperature. In hot summers or high-temperature environments with poor ventilation, due to the reduced temperature difference between the air and the condenser, the heat dissipation efficiency will drop markedly, resulting in a decline in the equipment's cooling capacity and an increase in operational energy consumption. Moreover, it will be accompanied by considerable fan noise during operation. Its initial investment is usually low, and daily maintenance is relatively simple. The main task is to regularly clean the dust on the condenser fins to ensure smooth ventilation. The main operating cost is electricity consumption. Air-cooled systems are highly suitable for small and medium-sized equipment, areas with abundant electricity but scarce water resources or inconvenient water access, laboratories with controllable environmental temperatures, as well as projects with limited budgets or those that prefer a simple and quick installation process.   2. Water-cooled system The working principle of a water-cooling system is to use circulating water flowing through a dedicated water-cooled condenser to absorb and carry away the heat of the system. The heated water flow is usually transported to the outdoor cooling tower for cooling and then recycled again. Its installation is complex and requires a complete set of external water systems, including cooling towers, water pumps, water pipe networks and water treatment devices. This not only fixes the installation location of the equipment, but also places high demands on site planning and infrastructure. The heat dissipation performance of the system is very stable and is basically not affected by changes in the external environmental temperature. Meanwhile, the operating noise near the equipment body is relatively low. Its initial investment is high. Besides electricity consumption, there are also other costs such as continuous water resource consumption during daily operation. The maintenance work is also more professional and complex, and it is necessary to prevent scale formation, corrosion and microbial growth. Water-cooled systems are mainly suitable for large, high-power industrial-grade equipment, workshops with high ambient temperatures or poor ventilation conditions, as well as situations where extremely high temperature stability and refrigeration efficiency are required.   Choosing between air cooling and water cooling is not about judging their absolute superiority or inferiority, but about finding the solution that best suits one's specific conditions. Decisions should be based on the following considerations: Firstly, large high-power equipment usually prefers water cooling to achieve stable performance. At the same time, the geographical climate of the laboratory (whether it is hot), water supply conditions, installation space and ventilation conditions need to be evaluated. Secondly, if a relatively low initial investment is valued, air cooling is a suitable choice. If the focus is on long-term operational energy efficiency and stability, and one does not mind the relatively high initial construction cost, then water cooling has more advantages. Finally, it is necessary to consider whether one has the professional ability to conduct regular maintenance on complex water systems.
    Read More
  • Lab Companion Vacuum Oven Working Principle Lab Companion Vacuum Oven Working Principle
    Sep 02, 2025
    Lab Companion vacuum oven is a precision device that dries materials under low-pressure conditions. Its working principle is based on a core scientific principle: in a vacuum state, the boiling point of a liquid will significantly decrease. Its working process can be divided into three key links:   1. Vacuum creation: By continuously extracting air from the oven chamber through a vacuum pump set, the internal environment is reduced to a level far below atmospheric pressure (typically up to 10Pa or even higher vacuum degrees). This move achieves two purposes: First, it greatly reduces the oxygen content in the cavity, preventing the material from oxidizing during the heating process; The second is to create conditions for the core physical process: low-temperature boiling. 2. Heating provides energy: At the same time as the vacuum environment is established, the heating system (usually using electric heating wires or heating plates) starts to work, providing thermal energy for the materials inside the chamber. Due to the extremely low internal pressure, the boiling points of the moisture or other solvents contained in the material drop sharply. For instance, at a vacuum degree of -0.085MPa, the boiling point of water can be reduced to approximately 45℃. This means that the material does not need to be heated to the conventional 100℃, and the internal moisture can vaporize rapidly at a lower temperature. 3. Steam removal: The water vapor or other solvent vapors produced by vaporization will be released from the surface and interior of the material. Due to the pressure difference within the cavity, these vapors will rapidly diffuse and be continuously drawn away by the vacuum pump, then discharged into the external environment. This process is ongoing continuously, ensuring the maintenance of a dry environment and preventing steam from re-condensing within the cavity, thereby driving the drying reaction to proceed continuously and efficiently towards dehydration.   The "low-temperature and high-efficiency drying" feature of vacuum ovens makes them widely used in the fields of pharmaceuticals, chemicals, electronics, food, and materials science, especially suitable for processing precious, sensitive or difficult-to-dry materials by conventional methods.
    Read More
  • Application of high and low temperature test chambers in the research of new Energy materials Application of high and low temperature test chambers in the research of new Energy materials
    Aug 30, 2025
    1. Lithium-ion batteries: High and low temperature tests run through all R&D stages of lithium-ion batteries, from materials, cells to modules. 2. Material level: Evaluate the basic physical and chemical properties of basic materials such as positive and negative electrode materials, electrolytes, and separators at different temperatures. For instance, testing the lithium plating risk of anode materials at low temperatures, or examining the thermal shrinkage rate (MSDS) of separators at high temperatures. 3. Cell level: Simulate the cold winter in the frigid zone (such as -40℃ to -20℃), test the low-temperature start-up, discharge capacity and rate performance of the battery, and provide data support for improving low-temperature performance. Cyclic charge and discharge tests are conducted at high temperatures (such as 45℃ and 60℃) to accelerate aging and predict the long-term service life and capacity retention rate of the battery. 4. Fuel cells: Proton exchange membrane fuel cells (PEMFC) have extremely strict requirements for the management of water and heat. Cold start capability is a key technical bottleneck for the commercialization of fuel cells. The test chamber simulates an environment below freezing point (such as -30℃) to test whether the system can be successfully started after freezing and to study the mechanical damage of ice crystals to the catalytic layer and proton exchange membrane. 5. Photovoltaic materials: Solar panels need to serve outdoors for more than 25 years, enduring the harsh tests of day and night as well as the four seasons. By simulating the temperature difference between day and night (such as 200 cycles from -40℃ to 85℃), the thermal fatigue of the interconnect solder tape of the battery cells, the aging and yellowing of the encapsulation materials (EVA/POE), and the bonding reliability between different laminated materials can be tested to prevent delamination and failure.   Modern high and low temperature test chambers are no longer simple temperature change chambers, but intelligent testing platforms integrating multiple functions. The advanced test chamber is equipped with observation Windows and test holes, allowing researchers to monitor the samples in real time during temperature changes.
    Read More
  • Selection of the installation site of the rapid temperature change test chambe Selection of the installation site of the rapid temperature change test chambe
    Jun 27, 2025
    Selection of the installation site of the rapid temperature change test chamber: The distance from the adjacent wall can smoothly give full play to the role and characteristics of the environmental test chamber. The long-term temperature of 15 ~ 45 °C and the relative environmental humidity exceeding 86% should be selected. site. The working temperature of the installation site must not change significantly.  It should be installed on a leveling surface (use a level to determine the level on the road during installation). It should be installed in a site without sun exposure.  It should be installed in a site with excellent natural ventilation. It should be installed in areas where flammable materials, explosive products and high-temperature heat sources are eliminated. It should be installed in a site with less dust. Install it as close as possible to the switching power supply of the power supply system.
    Read More
  • What should I do if the high and low temperature test chamber has problems? What should I do if the high and low temperature test chamber has problems?
    Jun 23, 2025
    High and low temperature test chamber may encounter a variety of problems in the process of use, the following is a summary of potential faults and their causes from different perspectives: 1. Core system failure Temperature out of control Reason: PID control parameters are out of balance, ambient temperature exceeds the design range of the equipment, multi-zone temperature interference. Case: In a special environment workshop, the external high temperature causes the refrigeration system to overload, resulting in temperature drift. Humidity is abnormal Reason: poor water quality of humidification leads to scaling and nozzle blockage, failure of ultrasonic humidifier piezoelectric sheet, and incomplete regeneration of dehumidification desiccant. Special phenomenon: reverse condensation occurs during high humidity test, resulting in the actual humidity in the box being lower than the set value. 2. Mechanical and structural problems Air flow is disorganized Performance: There is a temperature gradient of more than 3℃ in the sample area. Root cause: the customized sample rack changed the original design air duct and the accumulation of dirt on the centrifugal fan blade led to the destruction of dynamic balance.  sealing failure New failure: the magnetic force of electromagnetic sealing door decreases at low temperature, and the silicone sealing strip becomes brittle and cracks after-70℃. 3. Electrical and control system Intelligent control failure Software level: After firmware upgrade, the temperature dead zone setting error occurs and the historical data overflow causes the program to crash. Hardware level: SSR solid state relay breakdown causes continuous heating and bus communication is subjected to inverter electromagnetic interference. Security protection vulnerabilities Hidden dangers: the synchronous failure of the triple temperature protection relay and the false alarm caused by the expiration of the refrigerant detector calibration. 4. Challenges of special working conditions Specific temperature shock Problem: -40℃ to +150℃ rapid conversion of the evaporator weld stress cracking, thermal expansion coefficient difference resulting in the failure of the observation window seal. Long-term operation attenuation Performance degradation: after 2000 hours of continuous operation, the compressor valve plate wear leads to a decrease of 15% in refrigeration capacity and drift of ceramic heating tube resistance value. 5. Environmental and maintenance impact Infrastructure adaptation Case: The power oscillation of PTC heater caused by the fluctuation of power supply voltage and the water hammer effect of cooling water system damaged the plate heat exchanger. Preventive maintenance blind spots Lesson: Ignoring the positive pressure of the box leads to water entering the bearing chamber and biofilm growth and blockage in the condensate discharge pipe. 6. Pain points of emerging technologies New refrigerant application Challenges: system oil compatibility problems after R448A replaces R404A, and high pressure sealing problems of subcritical CO₂ refrigeration systems. IoT integration risks Fault: The remote control protocol is maliciously attacked, resulting in program tampering and cloud storage failure, resulting in the loss of test evidence chain. Strategy recommendations Intelligent diagnosis: configure vibration analyzer to predict the failure of compressor bearing, and use infrared thermal imager to scan the electrical connection points regularly. Reliability design: key components such as evaporator are made of SUS316L stainless steel to improve corrosion resistance, and redundant temperature control modules are added to the control system. Maintenance innovation: implement a dynamic maintenance plan based on operating hours, and establish an annual refrigerant purity testing system。 The solutions to these problems need to be analyzed in combination with the specific model of the equipment, the use environment and the maintenance history. It is recommended to establish a collaborative maintenance mechanism including the OEM of the equipment, third-party testing institutions and user technical teams. For key test items, it is recommended to configure a dual-machine hot standby system to ensure the continuity of testing.  
    Read More
  • What are the delivery standards of Lab Companion? What are the delivery standards of Lab Companion?
    Jun 23, 2025
    (1) Equipment installation and commissioning On-site service: technical personnel will deliver the goods free of charge and complete the mechanical assembly, electrical wiring and debugging. The debugging parameters shall meet the temperature and humidity, salt spray deposition amount and other indicators in the customer's technical agreement. Acceptance criteria: provide a third-party measurement report, and unqualified equipment shall be returned or replaced directly. For example, the rain test box shall pass 100% acceptance. (2) Customer training system Operation training: covers equipment start and stop, program setting and daily maintenance, customized for different user scenarios such as quality inspection institutions and automobile enterprises. Deep maintenance training: including fault diagnosis (such as troubleshooting of humidity system in high and low temperature and humidity test chamber) and spare parts replacement to improve customers' independent maintenance ability. (3) Technical support and response Instant response: respond to repair demand within 15 minutes, and solve routine faults within 48 hours (negotiate with remote areas). Remote diagnosis: through video guidance or remote access software, quickly locate the problem (such as abnormal dust concentration in the sand test chamber). (4) Spare parts supply and maintenance Make spare parts plan, give priority to the supply of wear and tear parts from cooperative units (such as China Railway Inspection and Certification Center, China Electronics Technology Group), and reduce downtime. Non-manual damage is free of charge during the warranty period, and paid services are provided after the warranty period with transparent charges.
    Read More
  • What should be paid attention to in summer when using the ice water impact test chamber? What should be paid attention to in summer when using the ice water impact test chamber?
    Jun 16, 2025
      When the Guangdong Hongzhan ice water impact test chamber is used in summer, the following matters should be paid special attention to to ensure the stable operation of the equipment and the accuracy of the test results: 1. Environment and heat dissipation management   Enhance ventilation and heat dissipation High temperature in summer is easy to lead to the decrease of equipment heat dissipation efficiency. Ensure that at least 10cm space is reserved around the equipment to promote air circulation. If the equipment adopts air cooling system, the condenser surface dust should be cleaned regularly to prevent poor heat dissipation and overheating of the compressor.Control the environmental temperature and humidity. Avoid placing the equipment in the direct sunlight area. It is recommended that the laboratory temperature be kept at 25±5℃ and the humidity be lower than 85%. High temperature and high humidity environment may accelerate the accumulation of frost or condensation water on the equipment, so it is necessary to increase the dehumidification measures. 2. Refrigeration system maintenance   Water quality and tank management Bacteria are easy to breed in summer, so use deionized water or pure water to avoid hard water scaling and blocking pipes. It is recommended to change the tank water every 3 days, and empty and clean the tank before long-term disuse.Refrigeration efficiency monitoring High temperature environment may lead to overload operation of the refrigeration system. The compressor oil condition should be checked regularly to ensure sufficient refrigerant. If the water temperature exceeds the set value (such as 0~4℃), the machine should be stopped immediately for troubleshooting. 3. Frosting and defrosting treatment   Prevent frost aggravation When the humidity is high in summer, the frost rate inside the equipment may accelerate. It is recommended to perform a manual defrosting process after 10 cycles: set the temperature to 30℃ and keep it for 30 minutes, and then drain water to clean the ice crystals on the evaporator surface. Optimize the test interval to avoid continuous long-term low temperature testing. It is recommended to reserve 15 minutes of buffer time between high temperature (e.g., 160℃) and ice water shock cycle to reduce the impact of thermal stress on the equipment. 4. Adjustment of operation specifications   Parameter setting optimization According to the characteristics of the summer environment, the normal temperature recovery stage time can be shortened appropriately (the reference standard is to complete the temperature switch within 20 seconds), but it must ensure that it meets the requirements of GB/T 2423.1 or ISO16750-4 standards.Safety protection should be strengthened. Anti-freezing gloves and goggles should be worn during operation to avoid the adhesion of hands and low-temperature parts caused by sweating. Before opening the door after high temperature test, the temperature inside the box should be confirmed to be below 50℃ to prevent scalding from hot steam. 5. Emergency and long-term shutdown preparation   Fault response If the equipment has E01 (temperature out of tolerance) or E02 (water level abnormal) alarm, you should immediately cut off the power supply and contact the technical support of the manufacturer. Do not disassemble the refrigeration pipeline by yourself.Long-term protection When not used for more than 7 days, the water tank should be emptied, power should be cut off and dust cover should be covered. At the same time, power should be on for 1 hour every half a month to keep the circuit board dry.   Through the above measures, the impact of high temperature and humidity environment in summer on the ice water shock test chamber can be effectively reduced to ensure the reliability of test data and the service life of the equipment. The specific operation details should be adjusted according to the equipment manual and actual working conditions.
    Read More
  • Maintenance methods for constant temperature and humidity test chambers Maintenance methods for constant temperature and humidity test chambers
    Jun 13, 2025
    1. Dust adhering to the condenser can cause the high-pressure switch of the compressor to trip and issue false alarms. Therefore, dust attached to the cooling grid of the condenser can be removed with a vacuum cleaner every month, or by using a hard-bristled brush after turning on the machine, or by blowing it off with a high-pressure air nozzle.2. The area around the machine and the ground at the bottom should be kept clean at all times to prevent a large amount of dust from being sucked into the unit or reducing equipment performance and causing accidents.3. When opening or closing the door or taking samples from the test chamber, do not touch the sealing strip on the door.4. The core of the constant temperature and humidity test chamber - the refrigeration system should be inspected once a year. Check for leaks in the copper tubes and at each joint and interface. If there are any, inform the manufacturer.5. The humidifier and water tank should be cleaned frequently to avoid scaling and affecting steam emission. Clean them after each test. Timely descaling helps extend the lifespan of the humidification tube and ensures smooth water flow. When cleaning, use a copper brush and then rinse with water.6. The distribution room should be cleaned and inspected more than once a year. Loose nodes can put the entire equipment in a dangerous working state, burn out components, cause fires, alarms, and endanger lives.7. The dry and wet bulb wicks should be checked frequently. Replace them promptly if they become hard or dirty. It is recommended to replace them every three months.8. Inspection and maintenance of the water circuit. The water pipes in the water circuit are prone to clogging and leakage. Regularly check for leaks or blockages. If found, remove them promptly or notify the manufacturer.
    Read More
  • Two reasons why the constant temperature and humidity test chamber does not refrigerate Two reasons why the constant temperature and humidity test chamber does not refrigerate
    Jun 10, 2025
    One reason 1. Because the temperature of the constant temperature and humidity test chamber cannot be maintained, observe whether the refrigeration compressor can start when the test chamber is running, and whether the compressor can start when the environmental test equipment is running, indicating that the circuit from the main power supply to each compressor is normal and the electrical system has no problem. 2. There is no fault in the electrical system. Continue to check the refrigeration system. First, check whether the exhaust and suction pressure of the low temperature (R23) compressor of the two sets of refrigeration units are lower than the normal value, and whether the suction pressure is in the vacuum state, indicating that the refrigeration dose of the main refrigeration unit is insufficient. 3. Touch the exhaust pipe and suction pipe of the R23 compressor with your hand, and find that the temperature of the exhaust pipe is not high, and the temperature of the suction pipe is not low (no frost), which also indicates that the R23 refrigerant in the host is insufficient. Another reason: 1. The cause of the failure has not been determined, and further confirmation is made in combination with the control process of the constant temperature and humidity test chamber. The test chamber has two sets of refrigeration units. One is the main unit, and the other is the auxiliary unit. When the cooling rate is high, both units operate simultaneously at the beginning of the temperature maintenance phase. Once the temperature stabilizes, the auxiliary unit stops, and the main unit maintains the temperature. If the R23 refrigerant leaks from the main unit, its cooling efficiency will be significantly reduced. During the cooling process, both units operate simultaneously, ensuring stable temperatures and a gradual decrease in cooling rate. In the insulation phase, if the auxiliary unit stops, the main unit loses its cooling function, causing the air inside the test chamber to rise slowly. When the temperature reaches a certain level, the control system activates the auxiliary unit to cool down, after which the auxiliary unit stops again. The cause of the production failure has been identified as a low-temperature (R23) refrigerant leak from the main unit. Upon checking the refrigeration system for leaks, a crack was found on the valve stem of the hot gas bypass solenoid valve, measuring about 1cm in length. After replacing the solenoid valve and recharging the system with refrigerant, the system returned to normal operation. This analysis shows that the fault diagnosis follows a step-by-step approach, starting from the 'external' aspects and moving inward, then focusing on 'electricity' and finally on 'cooling.' A thorough understanding of the test chamber's principles and operational processes is essential for accurate fault diagnosis.
    Read More
  • Use conditions of High and Low Temperature and Low Pressure Test Chamber
    Feb 26, 2025
    Condition one: environmental condition   1. Temperature: 15 ℃~35 ℃;   2. Relative humidity: not exceeding 85%;   3. Atmospheric pressure: 80kPa~106kPa 4. There is no strong vibration or corrosive gas around; 5. No direct sunlight exposure or direct radiation from other cold or heat sources; 6. There is no strong airflow around, and when the surrounding air needs to be forced to flow, the airflow should not be directly blown onto the equipment. 7.No magnetic field surrounding of the test chamber that may interference control circuit. 8.There is no high concentration of dust and corrosive substances around.   Condition two: Power supply condition 1. AC Voltage: 220V ± 22V or 380V ± 38V; 2. Frequency: 50Hz ± 0.5Hz.     Usage Conditions three: Water Supply Conditions It is recommended to use tap water or circulating water that meets the following conditions:   1.Water Temperature: Not exceeding 30℃;   2.Water Pressure: 0.1MPa to 0.3MPa;  3.Water Quality: Complies with industrial water standards.     Usage Conditions four: load for test chamber  The test chamber load must simultaneously meet the following conditions:   1. Total Mass of Load: The mass of the load per cubic meter of workspace volume should not exceed 80 kg;   2. Total Volume of Load: The total volume of the load should not exceed 1/5 of the workspace volume;   3. Load Placement: On any cross-section perpendicular to the main airflow direction, the total area of the load should not exceed 1/3 of the workspace cross-sectional area. The load must not obstruct airflow.   
    Read More

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

home

products

WhatsApp

contact us