banner
Home

Temperature Test Chamber

Temperature Test Chamber

  • Maintenance methods for constant temperature and humidity test chambers Maintenance methods for constant temperature and humidity test chambers
    Jun 13, 2025
    1. Dust adhering to the condenser can cause the high-pressure switch of the compressor to trip and issue false alarms. Therefore, dust attached to the cooling grid of the condenser can be removed with a vacuum cleaner every month, or by using a hard-bristled brush after turning on the machine, or by blowing it off with a high-pressure air nozzle.2. The area around the machine and the ground at the bottom should be kept clean at all times to prevent a large amount of dust from being sucked into the unit or reducing equipment performance and causing accidents.3. When opening or closing the door or taking samples from the test chamber, do not touch the sealing strip on the door.4. The core of the constant temperature and humidity test chamber - the refrigeration system should be inspected once a year. Check for leaks in the copper tubes and at each joint and interface. If there are any, inform the manufacturer.5. The humidifier and water tank should be cleaned frequently to avoid scaling and affecting steam emission. Clean them after each test. Timely descaling helps extend the lifespan of the humidification tube and ensures smooth water flow. When cleaning, use a copper brush and then rinse with water.6. The distribution room should be cleaned and inspected more than once a year. Loose nodes can put the entire equipment in a dangerous working state, burn out components, cause fires, alarms, and endanger lives.7. The dry and wet bulb wicks should be checked frequently. Replace them promptly if they become hard or dirty. It is recommended to replace them every three months.8. Inspection and maintenance of the water circuit. The water pipes in the water circuit are prone to clogging and leakage. Regularly check for leaks or blockages. If found, remove them promptly or notify the manufacturer.
    Read More
  • Two reasons why the constant temperature and humidity test chamber does not refrigerate Two reasons why the constant temperature and humidity test chamber does not refrigerate
    Jun 10, 2025
    One reason 1. Because the temperature of the constant temperature and humidity test chamber cannot be maintained, observe whether the refrigeration compressor can start when the test chamber is running, and whether the compressor can start when the environmental test equipment is running, indicating that the circuit from the main power supply to each compressor is normal and the electrical system has no problem. 2. There is no fault in the electrical system. Continue to check the refrigeration system. First, check whether the exhaust and suction pressure of the low temperature (R23) compressor of the two sets of refrigeration units are lower than the normal value, and whether the suction pressure is in the vacuum state, indicating that the refrigeration dose of the main refrigeration unit is insufficient. 3. Touch the exhaust pipe and suction pipe of the R23 compressor with your hand, and find that the temperature of the exhaust pipe is not high, and the temperature of the suction pipe is not low (no frost), which also indicates that the R23 refrigerant in the host is insufficient. Another reason: 1. The cause of the failure has not been determined, and further confirmation is made in combination with the control process of the constant temperature and humidity test chamber. The test chamber has two sets of refrigeration units. One is the main unit, and the other is the auxiliary unit. When the cooling rate is high, both units operate simultaneously at the beginning of the temperature maintenance phase. Once the temperature stabilizes, the auxiliary unit stops, and the main unit maintains the temperature. If the R23 refrigerant leaks from the main unit, its cooling efficiency will be significantly reduced. During the cooling process, both units operate simultaneously, ensuring stable temperatures and a gradual decrease in cooling rate. In the insulation phase, if the auxiliary unit stops, the main unit loses its cooling function, causing the air inside the test chamber to rise slowly. When the temperature reaches a certain level, the control system activates the auxiliary unit to cool down, after which the auxiliary unit stops again. The cause of the production failure has been identified as a low-temperature (R23) refrigerant leak from the main unit. Upon checking the refrigeration system for leaks, a crack was found on the valve stem of the hot gas bypass solenoid valve, measuring about 1cm in length. After replacing the solenoid valve and recharging the system with refrigerant, the system returned to normal operation. This analysis shows that the fault diagnosis follows a step-by-step approach, starting from the 'external' aspects and moving inward, then focusing on 'electricity' and finally on 'cooling.' A thorough understanding of the test chamber's principles and operational processes is essential for accurate fault diagnosis.
    Read More
  • Use conditions of High and Low Temperature and Low Pressure Test Chamber
    Feb 26, 2025
    Condition one: environmental condition   1. Temperature: 15 ℃~35 ℃;   2. Relative humidity: not exceeding 85%;   3. Atmospheric pressure: 80kPa~106kPa 4. There is no strong vibration or corrosive gas around; 5. No direct sunlight exposure or direct radiation from other cold or heat sources; 6. There is no strong airflow around, and when the surrounding air needs to be forced to flow, the airflow should not be directly blown onto the equipment. 7.No magnetic field surrounding of the test chamber that may interference control circuit. 8.There is no high concentration of dust and corrosive substances around.   Condition two: Power supply condition 1. AC Voltage: 220V ± 22V or 380V ± 38V; 2. Frequency: 50Hz ± 0.5Hz.     Usage Conditions three: Water Supply Conditions It is recommended to use tap water or circulating water that meets the following conditions:   1.Water Temperature: Not exceeding 30℃;   2.Water Pressure: 0.1MPa to 0.3MPa;  3.Water Quality: Complies with industrial water standards.     Usage Conditions four: load for test chamber  The test chamber load must simultaneously meet the following conditions:   1. Total Mass of Load: The mass of the load per cubic meter of workspace volume should not exceed 80 kg;   2. Total Volume of Load: The total volume of the load should not exceed 1/5 of the workspace volume;   3. Load Placement: On any cross-section perpendicular to the main airflow direction, the total area of the load should not exceed 1/3 of the workspace cross-sectional area. The load must not obstruct airflow.   
    Read More

leave a message

leave a message
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.
submit

home

products

WhatsApp

contact us